什么是LoRA模型 LoRA的全称是LoRA: Low-Rank Adaptation of Large Language Models,可以理解为stable diffusion(SD)模型的一种插件,和hyper-network,controlNet一样,都是在不修改SD模型的前提下,利用少量数据训练出一种画风/IP/人物,实现定制化需求,所需的训练资源比训练SD模要小很多,非常适合社区使用者和个人开发者。LoRA最初应用于NLP领域,用于微调GPT-3等模型(也就是ChatGPT的前生)。由于GPT参数量超过千亿,训练成本太高,因此LoRA采用了一个办法,仅训练低秩矩阵(low rank matrics),使用时将LoRA模型的参数注入(inject)SD模型,从而改变SD模型的生成风格,或者为SD模型添加新的人物/IP。用数据公式表达如下,其中 W0 是初始SD模型的参数(Weights), BA 为低秩矩阵也就是LoRA模型的参数, W 代表被LORA模型影响后的最终SD模型参数。整个过程是一个简单的线性关系,可以认为是原SD模型叠加LORA模型后,得到一个全新效果的模型。 |
1人表示很赞